Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328187

ABSTRACT

A fundamental challenge for cystic fibrosis (CF) gene therapy is ensuring sufficient transduction of airway epithelia to achieve therapeutic correction. Hypertonic saline (HTS) is frequently administered to people with CF to enhance mucus clearance. HTS transiently disrupts epithelial cell tight junctions, but its ability to improve gene transfer has not been investigated. Here we asked if increasing the concentration of NaCl enhances the transduction efficiency of three gene therapy vectors: adenovirus, AAV, and lentiviral vectors. Vectors formulated with 3-7% NaCl exhibited markedly increased transduction for all three platforms, leading to anion channel correction in primary cultures of human CF epithelial cells and enhanced gene transfer in mouse and pig airways in vivo. The mechanism of transduction enhancement involved tonicity but not osmolarity or pH. Formulating vectors with a high ionic strength solution is a simple strategy to greatly enhance efficacy and immediately improve preclinical or clinical applications.

2.
J Virol ; 98(1): e0151023, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38168680

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic continues to cause extraordinary loss of life and economic damage. Animal models of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection are needed to better understand disease pathogenesis and evaluate preventive measures and therapies. While mice are widely used to model human disease, mouse angiotensin converting enzyme 2 (ACE2) does not bind the ancestral SARS-CoV-2 spike protein to mediate viral entry. To overcome this limitation, we "humanized" mouse Ace2 using CRISPR gene editing to introduce a single amino acid substitution, H353K, predicted to facilitate S protein binding. While H353K knockin Ace2 (mACE2H353K) mice supported SARS-CoV-2 infection and replication, they exhibited minimal disease manifestations. Following 30 serial passages of ancestral SARS-CoV-2 in mACE2H353K mice, we generated and cloned a more virulent virus. A single isolate (SARS2MA-H353K) was prepared for detailed studies. In 7-11-month-old mACE2H353K mice, a 104 PFU inocula resulted in diffuse alveolar disease manifested as edema, hyaline membrane formation, and interstitial cellular infiltration/thickening. Unexpectedly, the mouse-adapted virus also infected standard BALB/c and C57BL/6 mice and caused severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.IMPORTANCEWe developed a new mouse model with a humanized angiotensin converting enzyme 2 (ACE2) locus that preserves native regulatory elements. A single point mutation in mouse ACE2 (H353K) was sufficient to confer in vivo infection with ancestral severe acute respiratory syndrome-coronavirus-2 virus. Through in vivo serial passage, a virulent mouse-adapted strain was obtained. In aged mACE2H353K mice, the mouse-adapted strain caused diffuse alveolar disease. The mouse-adapted virus also infected standard BALB/c and C57BL/6 mice, causing severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , 5' Untranslated Regions , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Disease Models, Animal , Mice, Inbred C57BL , Nucleotides , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
Front Genome Ed ; 5: 1271813, 2023.
Article in English | MEDLINE | ID: mdl-38077224

ABSTRACT

Considerable effort has been devoted to developing adeno-associated virus (AAV)-based vectors for gene therapy in cystic fibrosis (CF). As a result of directed evolution and capsid shuffling technology, AAV capsids are available with widespread tropism for airway epithelial cells. For example, AAV2.5T and AAV6.2 are two evolved capsids with improved airway epithelial cell transduction properties over their parental serotypes. However, limited research has been focused on identifying their specific cellular tropism. Restoring cystic fibrosis transmembrane conductance regulator (CFTR) expression in surface columnar epithelial cells is necessary for the correction of the CF airway phenotype. Basal cells are a progenitor population of the conducting airways responsible for replenishing surface epithelial cells (including secretory cells and ionocytes), making correction of this cell population vital for a long-lived gene therapy strategy. In this study, we investigate the tropism of AAV capsids for three cell types in primary cultures of well-differentiated human airway epithelial (HAE) cells and primary human airway basal cells. We observed that AAV2.5T transduced surface epithelial cells better than AAV6.2, while AAV6.2 transduced airway basal cells better than AAV2.5T. We also investigated a recently developed capsid, AAV6.2FF, which has two surface tyrosines converted to phenylalanines. Next, we incorporated reciprocal mutations to create AAV capsids with further improved surface and basal cell transduction characteristics. Lastly, we successfully employed a split-intein approach using AAV to deliver an adenine base editor (ABE) to repair the CFTR R553X mutation. Our results suggest that rational incorporation of AAV capsid mutations improves AAV transduction of the airway surface and progenitor cells and may ultimately lead to improved pulmonary function in people with CF.

4.
Nat Commun ; 14(1): 8051, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052872

ABSTRACT

Gene editing strategies for cystic fibrosis are challenged by the complex barrier properties of airway epithelia. We previously reported that the amphiphilic S10 shuttle peptide non-covalently combined with CRISPR-associated (Cas) ribonucleoprotein (RNP) enabled editing of human and mouse airway epithelial cells. Here, we derive the S315 peptide as an improvement over S10 in delivering base editor RNP. Following intratracheal aerosol delivery of Cy5-labeled peptide in rhesus macaques, we confirm delivery throughout the respiratory tract. Subsequently, we target CCR5 with co-administration of ABE8e-Cas9 RNP and S315. We achieve editing efficiencies of up-to 5.3% in rhesus airway epithelia. Moreover, we document persistence of edited epithelia for up to 12 months in mice. Finally, delivery of ABE8e-Cas9 targeting the CFTR R553X mutation restores anion channel function in cultured human airway epithelia. These results demonstrate the therapeutic potential of base editor delivery with S315 to functionally correct the CFTR R553X mutation in respiratory epithelia.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Epithelial Cells , Animals , Humans , Mice , Macaca mulatta/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Respiratory Mucosa/metabolism , Ribonucleoproteins/metabolism , Peptides/genetics , CRISPR-Cas Systems
5.
J Virol ; 97(11): e0090623, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37843369

ABSTRACT

IMPORTANCE: It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.


Subject(s)
Influenza A virus , Influenza, Human , Lung , Receptors, Cell Surface , Animals , Humans , Carrier Proteins/metabolism , Glycoconjugates/metabolism , Influenza A virus/metabolism , Lung/virology , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Sugars/metabolism , Influenza in Birds/metabolism , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism
6.
J Infect Dis ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37698016

ABSTRACT

BACKGROUND: Chronic pulmonary conditions such as asthma and COPD increase the risk of morbidity and mortality during infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). We hypothesized that individuals with such comorbidities are more susceptible to MERS-CoV infection due to increased expression of its receptor, dipeptidyl peptidase 4 (DPP4). METHODS: We modeled chronic airway disease by treating primary human airway epithelia with the Th2 cytokine IL-13, examining how this impacted DPP4 protein levels along with MERS-CoV entry and replication. RESULTS: IL-13 exposure for 3 days led to increased DPP4 protein abundance, while a 21-day treatment increased DPP4 levels and caused goblet cell metaplasia. Surprisingly, despite this increase in receptor availability, MERS-CoV entry and replication were not significantly impacted by IL-13 treatment. CONCLUSIONS: Our results suggest that increased DPP4 abundance is likely not the primary mechanism leading to increased MERS severity in the setting of Th2 inflammation. Transcriptional profiling analysis highlighted the complexity of IL-13 induced changes in airway epithelia, including altered expression of genes involved in innate immunity, antiviral responses, and maintenance of the extracellular mucus barrier. These data suggest that additional factors likely interact with DPP4 abundance to determine MERS-CoV infection outcomes.

7.
J Clin Invest ; 133(20)2023 10 16.
Article in English | MEDLINE | ID: mdl-37581935

ABSTRACT

The volume and composition of a thin layer of liquid covering the airway surface defend the lung from inhaled pathogens and debris. Airway epithelia secrete Cl- into the airway surface liquid through cystic fibrosis transmembrane conductance regulator (CFTR) channels, thereby increasing the volume of airway surface liquid. The discovery that pulmonary ionocytes contain high levels of CFTR led us to predict that ionocytes drive secretion. However, we found the opposite. Elevating ionocyte abundance increased liquid absorption, whereas reducing ionocyte abundance increased secretion. In contrast to other airway epithelial cells, ionocytes contained barttin/Cl- channels in their basolateral membrane. Disrupting barttin/Cl- channel function impaired liquid absorption, and overexpressing barttin/Cl- channels increased absorption. Together, apical CFTR and basolateral barttin/Cl- channels provide an electrically conductive pathway for Cl- flow through ionocytes, and the transepithelial voltage generated by apical Na+ channels drives absorption. These findings indicate that ionocytes mediate liquid absorption, and secretory cells mediate liquid secretion. Segregating these counteracting activities to distinct cell types enables epithelia to precisely control the airway surface. Moreover, the divergent role of CFTR in ionocytes and secretory cells suggests that cystic fibrosis disrupts both liquid secretion and absorption.


Subject(s)
Chloride Channels , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Chloride Channels/metabolism , Chlorides/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelium/metabolism , Lung/metabolism
8.
mBio ; 14(1): e0313622, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36625656

ABSTRACT

Coronaviruses (CoVs) of genera α, ß, γ, and δ encode proteins that have a PDZ-binding motif (PBM) consisting of the last four residues of the envelope (E) protein (PBM core). PBMs may bind over 400 cellular proteins containing PDZ domains (an acronym formed by the combination of the first letter of the names of the three first proteins where this domain was identified), making them relevant for the control of cell function. Three highly pathogenic human CoVs have been identified to date: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. The PBMs of the three CoVs were virulence factors. SARS-CoV mutants in which the E protein PBM core was replaced by the E protein PBM core from virulent or attenuated CoVs were constructed. These mutants showed a gradient of virulence, depending on whether the alternative PBM core introduced was derived from a virulent or an attenuated CoV. Gene expression patterns in the lungs of mice infected with SARS-CoVs encoding each of the different PBMs were analyzed by RNA sequencing of infected lung tissues. E protein PBM of SARS-CoV and SARS-CoV-2 dysregulated gene expression related to ion transport and cell homeostasis. Decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA, essential for alveolar edema resolution, was shown. Reduced CFTR mRNA levels were associated with edema accumulation in the alveoli of mice infected with SARS-CoV and SARS-CoV-2. Compounds that increased CFTR expression and activity, significantly reduced SARS-CoV-2 growth in cultured cells and protected against mouse infection, suggesting that E protein virulence is mediated by a decreased CFTR expression. IMPORTANCE Three highly pathogenic human CoVs have been identified: SARS-CoV, MERS-CoV, and SARS-CoV-2. The E protein PBMs of these three CoVs were virulence factors. Gene expression patterns associated with the different PBM motifs in the lungs of infected mice were analyzed by deep sequencing. E protein PBM motif of SARS-CoV and SARS-CoV-2 dysregulated the expression of genes related to ion transport and cell homeostasis. A decrease in the mRNA expression of the cystic fibrosis transmembrane conductance regulator (CFTR), which is essential for edema resolution, was observed. The reduction of CFTR mRNA levels was associated with edema accumulation in the lungs of mice infected with SARS-CoV-2. Compounds that increased the expression and activity of CFTR drastically reduced the production of SARS-CoV-2 and protected against its infection in a mice model. These results allowed the identification of cellular targets for the selection of antivirals.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , Animals , Mice , Humans , SARS-CoV-2/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Lung/metabolism , RNA, Messenger
9.
Nature ; 605(7908): 146-151, 2022 05.
Article in English | MEDLINE | ID: mdl-35314834

ABSTRACT

Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2. Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2)) and a phospholipase (phospholipase A2 group 2D (PLA2G2D)) contributed to poor outcomes in aged mice3,4. mRNA expression of PLA2G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2G2D-PGD2/PTGDR pathway is a useful target for therapeutic interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Eicosanoids , Leukocytes, Mononuclear , Mice , Organic Chemicals , Oxazoles , Piperazines , Polyesters , Prostaglandins , Spike Glycoprotein, Coronavirus , Sulfonamides
10.
CPT Pharmacometrics Syst Pharmacol ; 11(2): 240-251, 2022 02.
Article in English | MEDLINE | ID: mdl-34877817

ABSTRACT

Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The common ΔF508-CFTR mutation results in protein misfolding and proteasomal degradation. If ΔF508-CFTR trafficks to the cell surface, its anion channel function may be partially restored. Several in vitro strategies can partially correct ΔF508-CFTR trafficking and function, including low-temperature, small molecules, overexpression of miR-138, or knockdown of SIN3A. The challenge remains to translate such interventions into therapies and to understand their mechanisms. One approach for connecting such interventions to small molecule therapies that has previously succeeded for CF and other diseases is via mRNA expression profiling and iterative searches of small molecules with similar expression signatures. Here, we query the Library of Integrated Network-based Cellular Signatures using transcriptomic signatures from previously generated CF expression data, including RNAi- and low temperature-based rescue signatures. This LINCS in silico screen prioritized 135 small molecules that mimicked our rescue interventions based on their genomewide transcriptional perturbations. Functional screens of these small molecules identified eight compounds that partially restored ΔF508-CFTR function, as assessed by cAMP-activated chloride conductance. Of these, XL147 rescued ΔF508-CFTR function in primary CF airway epithelia, while also showing cooperativity when administered with C18. Improved CF corrector therapies are needed and this integrative drug prioritization approach offers a novel method to both identify small molecules that may rescue ΔF508-CFTR function and identify gene networks underlying such rescue.


Subject(s)
Cystic Fibrosis , MicroRNAs , Cell Line , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Discovery , Humans , MicroRNAs/genetics , Mutation
11.
BMC Med Genomics ; 14(1): 258, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34717611

ABSTRACT

BACKGROUND: We previously reported that expression of a miR-138 mimic or knockdown of SIN3A in primary cultures of cystic fibrosis (CF) airway epithelia increased ΔF508-CFTR mRNA and protein levels, and partially restored CFTR-dependent chloride transport. Global mRNA transcript profiling in ΔF508-CFBE cells treated with miR-138 mimic or SIN3A siRNA identified two genes, SYVN1 and NEDD8, whose inhibition significantly increased ΔF508-CFTR trafficking, maturation, and function. Little is known regarding the dynamic changes in the CFTR gene network during such rescue events. We hypothesized that analysis of condition-specific gene networks from transcriptomic data characterizing ΔF508-CFTR rescue could help identify dynamic gene modules associated with CFTR biogenesis. METHODS: We applied a computational method, termed M-module, to analyze multiple gene networks, each of which exhibited differential activity compared to a baseline condition. In doing so, we identified both unique and shared gene pathways across multiple differential networks. To construct differential networks, gene expression data from CFBE cells were divided into three groups: (1) siRNA inhibition of NEDD8 and SYVN1; (2) miR-138 mimic and SIN3A siRNA; and (3) temperature (27 °C for 24 h, 40 °C for 24 h, and 27 °C for 24 h followed by 40 °C for 24 h). RESULTS: Interrogation of individual networks (e.g., NEDD8/SYVN1 network), combinations of two networks (e.g., NEDD8/SYVN1 + temperature networks), and all three networks yielded sets of 1-modules, 2-modules, and 3-modules, respectively. Gene ontology analysis revealed significant enrichment of dynamic modules in pathways including translation, protein metabolic/catabolic processes, protein complex assembly, and endocytosis. Candidate CFTR effectors identified in the analysis included CHURC1, GZF1, and RPL15, and siRNA-mediated knockdown of these genes partially restored CFTR-dependent transepithelial chloride current to ΔF508-CFBE cells. CONCLUSIONS: The ability of the M-module to identify dynamic modules involved in ΔF508 rescue provides a novel approach for studying CFTR biogenesis and identifying candidate suppressors of ΔF508.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Gene Expression Regulation , Gene Regulatory Networks , Humans , Mutation , NEDD8 Protein/genetics , NEDD8 Protein/metabolism , Protein Transport , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Transcriptome , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
12.
Nucleic Acids Res ; 49(18): 10558-10572, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34520545

ABSTRACT

Mutations in the CFTR gene that lead to premature stop codons or splicing defects cause cystic fibrosis (CF) and are not amenable to treatment by small-molecule modulators. Here, we investigate the use of adenine base editor (ABE) ribonucleoproteins (RNPs) that convert A•T to G•C base pairs as a therapeutic strategy for three CF-causing mutations. Using ABE RNPs, we corrected in human airway epithelial cells premature stop codon mutations (R553X and W1282X) and a splice-site mutation (3849 + 10 kb C > T). Following ABE delivery, DNA sequencing revealed correction of these pathogenic mutations at efficiencies that reached 38-82% with minimal bystander edits or indels. This range of editing was sufficient to attain functional correction of CFTR-dependent anion channel activity in primary epithelial cells from CF patients and in a CF patient-derived cell line. These results demonstrate the utility of base editor RNPs to repair CFTR mutations that are not currently treatable with approved therapeutics.


Subject(s)
Adenine , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Gene Editing , Respiratory Mucosa/metabolism , Cell Line , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Mutation , Ribonucleoproteins
13.
mBio ; 12(4): e0097021, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34340553

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused significant morbidity and mortality on a global scale. The etiologic agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), initiates host cell entry when its spike protein (S) binds to its receptor, angiotensin-converting enzyme 2 (ACE2). In airway epithelia, the spike protein is cleaved by the cell surface protease TMPRSS2, facilitating membrane fusion and entry at the cell surface. This dependence on TMPRSS2 and related proteases suggests that protease inhibitors might limit SARS-CoV-2 infection in the respiratory tract. Here, we tested two serine protease inhibitors, camostat mesylate and nafamostat mesylate, for their ability to inhibit entry of SARS-CoV-2 and that of a second pathogenic coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV). Both camostat and nafamostat reduced infection in primary human airway epithelia and in the Calu-3 2B4 cell line, with nafamostat exhibiting greater potency. We then assessed whether nafamostat was protective against SARS-CoV-2 in vivo using two mouse models. In mice sensitized to SARS-CoV-2 infection by transduction with human ACE2, intranasal nafamostat treatment prior to or shortly after SARS-CoV-2 infection significantly reduced weight loss and lung tissue titers. Similarly, prophylactic intranasal treatment with nafamostat reduced weight loss, viral burden, and mortality in K18-hACE2 transgenic mice. These findings establish nafamostat as a candidate for the prevention or treatment of SARS-CoV-2 infection and disease pathogenesis. IMPORTANCE The causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), requires host cell surface proteases for membrane fusion and entry into airway epithelia. We tested the hypothesis that inhibitors of these proteases, the serine protease inhibitors camostat and nafamostat, block infection by SARS-CoV-2. We found that both camostat and nafamostat reduce infection in human airway epithelia, with nafamostat showing greater potency. We then asked whether nafamostat protects mice against SARS-CoV-2 infection and subsequent COVID-19 lung disease. We performed infections in mice made susceptible to SARS-CoV-2 infection by introducing the human version of ACE2, the SARS-CoV-2 receptor, into their airway epithelia. We observed that pretreating these mice with nafamostat prior to SARS-CoV-2 infection resulted in better outcomes, in the form of less virus-induced weight loss, viral replication, and mortality than that observed in the untreated control mice. These results provide preclinical evidence for the efficacy of nafamostat in treating and/or preventing COVID-19.


Subject(s)
Benzamidines/pharmacology , Esters/pharmacology , Guanidines/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Cells, Cultured , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/drug effects , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
14.
Mol Ther Nucleic Acids ; 25: 293-301, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34458011

ABSTRACT

Life-long expression of a gene therapy agent likely requires targeting stem cells. Here we ask the question: does viral vector transduction or ectopic expression of a therapeutic transgene preclude airway stem cell function? We used a lentiviral vector containing a GFP or cystic fibrosis transmembrane conductance regulator (CFTR) transgene to transduce primary airway basal cells from human cystic fibrosis (CF) or non-CF lung donors and monitored expression and function after differentiation. Ussing chamber measurements confirmed CFTR-dependent chloride channel activity in CF donor cells. Immunostaining, quantitative real-time PCR, and single-cell sequencing analysis of cell-type markers indicated that vector transduction or CFTR expression does not alter the formation of pseudostratified, fully differentiated epithelial cell cultures or cell type distribution. These results have important implications for use of gene addition or gene editing strategies as life-long curative approaches for lung genetic diseases.

15.
Sci Adv ; 7(27)2021 Jul.
Article in English | MEDLINE | ID: mdl-34215591

ABSTRACT

Transmission-blocking vaccines are urgently needed to reduce transmission of SARS-CoV 2, the cause of the COVID-19 pandemic. The upper respiratory tract is an initial site of SARS-CoV-2 infection and, for many individuals, remains the primary site of virus replication. An ideal COVID-19 vaccine should reduce upper respiratory tract virus replication and block transmission as well as protect against severe disease. Here, we optimized a vaccine candidate, parainfluenza virus 5 (PIV5) expressing the SARS-CoV-2 S protein (CVXGA1), and then demonstrated that a single-dose intranasal immunization with CVXGA1 protects against lethal infection of K18-hACE2 mice, a severe disease model. CVXGA1 immunization also prevented virus infection of ferrets and blocked contact transmission. This mucosal vaccine strategy inhibited SARS-CoV-2 replication in the upper respiratory tract, thus preventing disease progression to the lower respiratory tract. A PIV5-based mucosal vaccine provides a strategy to induce protective innate and cellular immune responses and reduce SARS-CoV-2 infection and transmission in populations.

18.
J Infect Dis ; 224(8): 1357-1361, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34289058

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 ) initiates entry into airway epithelia by binding its receptor, angiotensin-converting enzyme 2 (ACE2). METHODS: To explore whether interindividual variation in ACE2 abundance contributes to variability in coronavirus disease 2019 (COVID-19) outcomes, we measured ACE2 protein abundance in primary airway epithelial cultures derived from 58 human donor lungs. RESULTS: We found no evidence for sex- or age-dependent differences in ACE2 protein expression. Furthermore, we found that variations in ACE2 abundance had minimal effects on viral replication and induction of the interferon response in airway epithelia infected with SARS-CoV-2. CONCLUSIONS: Our results highlight the relative importance of additional host factors, beyond viral receptor expression, in determining COVID-19 lung disease outcomes.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/analysis , Biological Variation, Population , Bronchi/cytology , Bronchi/pathology , Bronchi/virology , COVID-19/virology , Epithelial Cells , Female , Humans , Male , Primary Cell Culture , Receptors, Coronavirus/analysis , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Sex Factors , Virus Internalization
19.
CPT Pharmacometrics Syst Pharmacol ; 10(5): 500-510, 2021 05.
Article in English | MEDLINE | ID: mdl-33934548

ABSTRACT

Rare diseases affect 10% of the first-world population, yet over 95% lack even a single pharmaceutical treatment. In the present age of information, we need ways to leverage our vast data and knowledge to streamline therapeutic development and lessen this gap. Here, we develop and implement an innovative informatic approach to identify therapeutic molecules, using the Connectivity Map and LINCS L1000 databases and disease-associated transcriptional signatures and pathways. We apply this to cystic fibrosis (CF), the most common genetic disease in people of northern European ancestry leading to chronic lung disease and reduced lifespan. We selected and tested 120 small molecules in a CF cell line, finding 8 with activity, and confirmed 3 in primary CF airway epithelia. Although chemically diverse, the transcriptional profiles of the hits suggest a common mechanism associated with the unfolded protein response and/or TNFα signaling. This study highlights the power of informatics to help identify new therapies and reveal mechanistic insights while moving beyond target-centric drug discovery.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Genomics , Humans
20.
PLoS Biol ; 19(4): e3001217, 2021 04.
Article in English | MEDLINE | ID: mdl-33901166

ABSTRACT

What transpires soon after inhaling Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the respiratory virus causing Coronavirus Disease 2019 (COVID-19)? Where does infection begin? What are the features of subsequent virus spread? How might host responses quickly contain infection? Two recently published manuscripts have evaluated infection in primary cultures of well-differentiated cells to address these questions and bring more light on the proviral and antiviral components operating during the initial days after SARS-CoV-2 exposure.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents , Epithelium , Gene Expression , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...